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Abstract. While current metamodelling languages are well-suited for the struc-
tural definition of abstract syntax and metamodelling platforms like the Eclipse
Modelling Framework (EMF) provide various means for the specification of a
textual or graphical concrete syntax, techniques for the specification of model se-
mantics are not as matured. Therefore, we propose the application of reference
attribute grammars (RAGs) to alleviate the lack of support for formal seman-
tics specification in metamodelling. We contribute the conceptual foundations to
integrate metamodelling languages and RAGs, and present JastEMF — a tool
for the specification of EMF metamodel semantics using JastAdd RAGs. The
presented approach is exemplified by an integrated metamodelling example. Its
advantages, disadvantages and limitations are discussed and related to metamod-
elling, attribute grammars (AGs) and other approaches for metamodel semantics.

1 Introduction

Metamodelling is a vital activity for Model-Driven Software Development (MDSD).
It covers the definition of structures to represent abstract syntax models, the specifica-
tion of a concrete syntax, and the specification of the meaning of models [1]. While
infrastructures like the Eclipse Modelling Framework (EMF) [2] provide means for the
specification of abstract syntax and various associated tools for the specification of a
textual or graphical concrete syntax, techniques for the specification of model seman-
tics are not as matured [1].

In this paper we propose the application of RAGs [3] — a well-investigated exten-
sion of Knuth’s classic AGs [4] — to alleviate the lack of support for formal semantics
specification in metamodelling. They enable (1) the specification of semantics on tree
and graph-based abstract syntax structures with unique spanning trees, (2) complete-
ness and consistency checks of semantic specifications, and (3) the generation of an
implementation of semantics specifications.

The contributions of this paper are as follows: The next section discusses common
concerns in the specification of metamodels, identifies key capabilities we target with
semantics-integrated metamodelling and introduces a motivating example. In Section 3
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Fig. 1. Transformations in Metamodelling.

we sketch general foundations for the application of RAGs for metamodel semantics
— our semantics-integrated metamodelling approach. In Section 4 we demonstrate the
feasibility of this idea by presenting JastEMF, a tool that integrates the Ecore meta-
modelling language and the JastAdd [5] attribute grammar system. In Section 5 we
describe the application of our semantics-integrated metamodelling approach to im-
plement the SiPLE-Statemachines language introduced in Section 2. In Section 6 we
evaluate JastEMF against the key capabilities identified for semantics-integrated meta-
modelling based on our experiences with the SiPLE-Statemachines case study. Finally,
we discuss related work in Section 7 and conclude our contribution in Section 8.

2 Motivation for Semantics-Integrated Metamodelling

This section motivates our idea of semantics-integrating metamodelling with RAGs by
identifying methodical gaps to achieve common objectives in metamodelling. After-
wards, we introduce a set of key capabilities we target with semantics-integrated meta-
modelling and introduce SiPLE-Statemachines, an exemplary metamodel project that
serves as a continuous example throughout this paper.

2.1 Metamodelling: Objectives, Transformations, Specifications

Metamodelling has the objective to specify the implementation of a modelling lan-
guage. Such implementation should provide means to transform programs (i.e., mod-
els) starting from (1) their textual representation to (2) their abstract syntax represen-
tation and finally (3) representations of their static and execution semantics [1]. In the
metamodelling world, all these representations and transformations are related to the
language’s metamodel, which typically declares the data structures that are used for
representing language constructs in abstract syntax models and is the interface for the
specification of concrete syntax and semantics. As depicted in Figure 1, each trans-
formation’s input and output model is built using specific kinds of constructs of the
language metamodel. A first transformation — typically specified using regular ex-
pressions and context-free grammars — derives an abstract syntax tree (AST) from



textual symbols. The data structure required to represent the AST is solely declared
by the Metaclasses, Attributes and Containment References in the
metamodel. In a second transformation, the structures that are declared as Non—-Con-
tainment References (e.g., connecting variable usage with variable declarations)
need to be derived, resulting in a reference-attributed model — i.e., the abstract syntax
tree with a superimposed reference graph. Graphical editors often directly operate on
such reference-attributed models (cf. Figure 1) and rely on a direct manipulation of
non-containment references. A last transformation performs semantics evaluations to
derive values for Derived Attributes and executes Operations declared in
the metamodel. Note that the reference-attributed model and the full-attributed model
still contain the abstract syntax tree as their spanning tree.

All the above mentioned transformations are important artefacts of a language and,
thus, motivate a formal definition. However, formal approaches for the specification of
static or execution semantics are not yet established in the metamodelling world. As
depicted in Figure 1 we aim at closing this gap by the application of RAGs for the
specification of metamodel semantics.

2.2 Capabilities of Semantics-Integrated Metamodelling

By applying RAGs to achieve semantics-integrated metamodelling we expect to com-
bine the benefits of metamodelling frameworks and attribute grammars. However, to
our experience, integration means not only combination of benefits but often also a
compromise of the technical and methodical capabilities of the individual approaches.
We therefore collected a number of technical key capabilities to be contributed by each
individual approach that afterwards will be used to evaluate our integrated solution.

Metamodelling frameworks (e.g., the EMF) are built around a metamodelling lan-
guage (e.g., Ecore) and typically provide tools for the specification and implementation
of modelling languages and their tooling. In particular they provide:

MM 1: Metamodelling Abstraction: Metamodelling language that provides a dedi-
cated abstraction to specify language metamodels.
MM 2: Metamodelling Consistency: Tools to check the structural completeness and
consistency of metamodel specifications.
MM 3: Metamodel Implementation Generators: Generators to derive implementa-
tions from metamodel specifications.
MM 4: Metamodel/Model Compatibility: A common repository and representation
that enables integration of modelling languages and models.
MM 5: Tooling Compatibility: Common platform for tool integration/application:
MM 5.1: Model-to-Model Transformation Tools: E.g., ATL [6] or XTend [7].
MM 5.2: Model-to-Text Transformation Tools: Code generators and model-dri-
ven template languages like Mofscript [8] or XPand [7].

MM 5.3: Text-to-Model Transformation Tools: Parser generators for models as
EMFText [9], Monticore [10] or XText [11].

MM 5.4: Generic Model Editors: Generic tools to access and edit models as the
Generic EMF editor [2] or Exeed [12].



MM 5.5: Tooling Generators: Tooling to specify and generate textual (EMFText,
Monticore, XText) or graphical (GMF [2], EuGENia') model editors.

Attribute grammar systems typically provide means for the specification of lan-
guages’ abstract syntax and semantics and tools to derive an implementation from such
specifications. In particular they provide:

AG 1: Semantics Abstraction: Well-investigated, declarative abstraction for formal
semantics specifications.

AG 2: Semantics Consistency: Tooling to check the structural completeness and con-
sistency of semantics specifications.

AG 3: Semantics Generators: Generators to derive an implementation (i.e., evalua-
tor) from semantics specifications.

AG 4: Semantics Modularity: Modular, extensible semantics specifications [13].

2.3 SiPLE-Statemachines: A Typical Modelling Language

To exemplify and evaluate semantics-integrated metamodelling we will use a typi-
cal modelling scenario. It is built upon a Simple imperative Programming Language
Example (SiPLE) and a statemachine language which are combined to support the mod-
elling of executable statemachines.

SiPLE’s main features are boolean, integer, and real arithmetics, nested scopes,
nested procedure declarations, recursion, while loops and conditionals. All these fea-
tures of SiPLE have the intuitive semantics familiar from imperative programming lan-
guages. Listing 1.1 shows a basic SiPLE program that asks the user for a number, com-
putes its Fibonacci value and prints it.

Listing 1.1. Fibonacci Numbers in SiPLE

Procedure main() Begin

Procedure fibonacci(Var n:Integer) : Integer Begin
If n =0 Or n =1 Then Return 1; Fi;
Return fibonacci(n—2) + fibonacci(n—1);

End;

Var n:Integer;
Read n;

Write fibonacci(n);
End;

Statemachines describe the behaviour of systems using a state-based abstraction
[14]. In contrast to the textual syntax of SiPLE, they are typically modelled using a
graphical notation. The exemplary statemachine depicted in Fig. 2 describes the be-
haviour of a phone. It uses concepts like states (e.g., Dialing), transitions (e.g.,
incoming call), guard conditions and actions. With transitions the phone reacts
on particular events from the environment by changing states, e.g., incoming call
where the phone changes from Waiting to Ringing. Guards and actions enable
a more fine-grained specification of boolean conditions and imperative behaviour, re-
spectively. Therefore, we want to combine the statemachine language and SiPLE to

! http://www.eclipse.org/gmt/epsilon/doc/articles/eugenia-gmf-tutorial/
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Fig. 2. Phone example modelled in a generated GMF editor for SiPLE-Statemachine.

SiPLE-Statemachine. Consider for instance the state Dialing where an entry action
is used to read a number from the user (Read number; ). SiPLE action statements and
boolean guard expressions can also be associated to transitions. For instance, when the
phone is in the Dialing state and receives a call event, it checks the entered number
using a boolean SiPLE expression and changes its state in accordance. While walking
the according transition it writes the dialed or rejected number to the standard output
(Write number; Write true; orWrite number; Write false;).

In this paper we will demonstrate and evaluate the integration of metamodelling and
RAGs by implementing SiPLE-Statemachines. Relying on the key capabilities identi-
fied in Section 2.2 we plan to provide:

— A metamodel (MM 1, MM 2, MM 3), textual concrete syntax (MM 5.3, MM 5.5)
and attribute-grammar semantics (AG 1, AG 2, AG 3) for SiPLE.

— An interpreter that implements an execution semantics for SIPLE (MM 5).

— The SiPLE-Statemachine metamodel (MM 1, MM 2, MM 3) composed from the
two metamodels of SiPLE and Statemachine (MM 4).

— A generated graphical editor for SiPLE-Statemachine (MM 5.5).

— An attribute-grammar semantics for SiPLE-Statemachine (AG 1, AG 2, AG 3, AG
4), e.g., for mapping transition labels to states and to reason about state reachability.

— An execution semantics for SiPLE-Statemachine by implementing a model-to-text
transformation (MM 5.2) for statemachines to plain SiPLE code.

3 Foundations of Attribute Grammars for Metamodel Semantics

Because RAGs rely on a specific representation of abstract syntax, their application in
metamodelling requires an integration with metamodel constructs. In this section we
prepare such integration by investigating RAGs’ specific syntax requirements, clarify-
ing what kind of semantics they can specify and which kind of model information these
semantics represent, and finally showing that most metamodelling languages indeed
satisfy RAGs’ syntax requirements.



3.1 Reference Attribute Grammars and Metamodel Semantics

RAGs are used to specify semantics for tree structures that are usually specified us-
ing a context-free grammar (CFG). Given a tree the RAG annotates it with values and
imposes a graph on it representing the language’s semantics. Because we like to use
RAGs for metamodel semantics, we must identify metamodel constructs that induce
such tree-structure in model instances. We like to use our approach not only for certain
metamodels, but rather for any metamodel developed in a metamodelling language.
Thus, the separation of metamodel constructs into tree- and graph-inducing structures
— into syntax and semantics — should be metamodelling language inherent, i.e. be
implied by the meta-metamodel®. For this purpose, we investigate common metamod-
elling languages’ concepts and distinguish them into syntactic (tree structure defining)
and semantic (graph structure declaring) ones. Both sets will be disjunct. Given this
separation RAGs are indeed appropriate to specify metamodel semantics in the sense
that they can be used to specify the transformation of abstract syntax trees to reference
attributed graphs and full-attributed graphs (cf. Figure 1). RAGs can be used for any
kind of static model semantics like model checking and analysis. Definition 3.1 sum-
marises the foundations of integrating RAGs and metamodels:

Definition 3.1 (Metamodel Semantics): Let {2 be a metamodel and FE(, the finite
set of its elements. Let Ky, and F,,,, be disjunct subsets of E,, whereas E, =
Esyngy UEsem,,. Let E,, be the set of entities of a model instance w € 2. Since w € {2,
all entities e € E,, have atype t. € Fy. Let S, be a function that defines for all w € (2
for each entity e € E,, with . € Egenm,, the value of e. We call S, a metamodel se-
mantic for 2. Iff E,,,, specifies a spanning tree for each w € {2, Sy can be specified
with a RAG.

The metamodel semantics Sy, can depend on any metamodel element me € E,. They
even can depend on themselves, in which case they are only well-defined if there exists
a fix-point. Thus, different model instances can only have different semantics, if the se-
mantics depend on syntactic elements me € Ejy,,. Colloquially explained, a model’s
semantics (i.e., all entities {e|e € E,, A t. € Fgem,, 1) depend on its structure (i.e., all
entities {ele € E, A te € Esyn,, 1.

What remains to show is, which metamodelling concepts belong to Ej,,, and
Esem, and that indeed Ey,, specifies a tree structure.

3.2 Common Metamodelling Languages and Abstract Syntax Trees

Most metamodelling languages support (1) metaclasses consisting of (2) non-derived
and (3) derived attributes and (4) operations. Metaclasses can be related to each other
by (5) containment and (6) non-containment relationships. Non-derived attribute val-
ues represent AST terminals in models and, thus, are in FE,,,,,. Containment refer-
ences model that instances of a metaclass C consist of instances of a metaclass Cs.

% Most metamodelling languages are specified in themselves, such that it is appropriate just to
talk about metamodels in the following.



The contained C5 instances are an inextricable, structural part of the C; instances.
The relationship between C; and C is a composite and iff an instance es € C5 is
a composite of an instance e; € C1, e; cannot be a composite of es. Thus, contain-
ment relationships specify tree structures. They are in Ely, . Derived attributes and
side-effect free operations model the values that can be calculated from other values
of a given model. Non-containment relationships model arbitrary references between
metaclasses. Thus, derived attributes, side-effect free operations, and non-containment
relationships are in F.,, ,. Operations with side-effects can model either, extensions of
models derived from existing model information or arbitrary model manipulations. De-
rived model extensions are in Es.,,,, because they can be considered to be part of the
graph imposed by semantics (w.r.t. AGs such derived model extensions are higher-order
attributes [15]). Operations that represent arbitrary model manipulations (e.g., to delete
model elements or imperatively add new elements) cannot be handled by our definition
of metamodel semantics.

3.3 Graphs and (Partial) Reference-Attributed Models

In the domain of modelling, often reference-attributed models (cf. Section 2.1 and
Fig. 1) are the starting point for semantic evaluations. A typical scenario are models
developed in graphical editors. Of course, it is no problem for a RAG-based metamodel
semantic Sy, if elements of F.,,,, of a model instance have a predefined value —i.e.,
if instead of a tree the semantic evaluation starts from a graph with a unique spanning
tree.

Throughout semantic evaluation, a RAG evaluator can use such predefined values
and simply ignore their specified semantics. If for every model instance and all its oc-
curences the value of a non-containment reference is always predefined, the specifica-
tion of its semantics can even be omitted. Thus, (partial) reference-attributed models do
not influence the applicability of our RAG approach for metamodel semantics.

4 JastEMF: An Exemplary Attribute Grammar and
Metamodelling Language Integration

In this section, we discuss the integration of an exemplary metamodelling framework
(EMF [2]) and RAG system (JastAdd [5]). We shortly introduce both approaches and
then discuss the details of their integration in JastEMF.

4.1 The Eclipse Modelling Framework

The EMF is a common metamodelling infrastructure for the Eclipse platform providing
metamodel development and implementation tools based on the metamodelling lan-
guage Ecore [2]. EMF contributes tools to edit Ecore metamodel specifications, check
their consistency and generate a Java-based implementation of the metamodel spec-
ifications. The framework is used for the implementation of a plethora of modelling
languages?, and is an important integration platform for various modelling tools.

3 http://www.emn.fr/z-info/atlanmod/index.php/Ecore



For the definition of concrete syntax the EMF is complemented by various tools to
specify a concrete syntax in relation to a metamodel. Editor generators that are tightly
integrated with EMF like EMFText [9] or XText [11] enable the declarative specifica-
tion of context-free grammars to define parsers, printers, and advanced textual editors
for models. There are also tools to realise a graphical (diagrammatic) model syntax,
e.g., the Graphical Modelling Framework (GMF) [2].

For the specification of semantics, the EMF mainly relies on Java source code that
evaluates derived attributes or implements operations declared in the metamodel. Be-
sides the application of the Object Constraint Language (OCL) [16] or model-transfor-
mations, we are not aware of formal, mature techniques to specify static and execution
semantics in EMF. For a further discussion of approaches for metamodel semantics we
refer to Section 7.

4.2 The JastAdd Metacompiler

JastAdd [5, 13] is an object-oriented compiler generation system. It allows to generate a
Java implementation of a demand-driven semantics evaluator from a given AG. Besides
the basic attribute grammar concepts [4], JastAdd supports advanced AG extensions
such as reference [3] (RAGs) and circular attributes [17].

JastAdd has two specification languages. One to specify abstract syntax and another
to specify an attribution (i.e. semantics). Abstract syntax specifications consist of node
type declarations (non-terminals) and their child nodes (arbitrary list of terminals and
non-terminals). Language semantics is usually specified within several modules con-
taining attribute definitions and attribute equations that are associated with node types
of the abstract syntax.

Given a set of AST and attribute specifications the JastAdd compiler generates a
Java class for each node type, accessors for the node’s children nodes, and methods for
each attribute defined for the node type. The code required for attributes’ evaluation
is generated into their method bodies. Consequently, evaluation of semantics can be
triggered by accessing the corresponding methods.

4.3 Integrating EMF and JastAdd

Because both EMF and JastAdd provide code generation for Java, they are well-suited
to explore semantics-integrated metamodelling. For their practical integration it is re-
quired (1) to merge the Java classes that represent a language’s abstract syntax in EMF
and in JastAdd and (2) to apply the generated attribute evaluator to compute EMF mod-
els’ semantics.

Based on the integration foundations presented in Section 3 we derived a mapping
of elements in the Ecore metamodel and specification concepts used by JastAdd. The
concrete mappings depicted in Figure 3 are grouped in two sets. The first set contains
elements related only to model syntax (Eyy,). The second set contains the elements
related to model semantics (Esen,,). In the second set constructs of the Ecore meta-
model are typically used to declare the semantics interface of specific elements while
the corresponding JastAdd construct specifies the element’s semantics. Depending on
its actual syntax and semantics, multiple mappings are possible.



Syntax in Ecore Syntax in JastAdd

EClass Node Type

EReference [containment] Non-Terminal Child

EAttribute [non-derived] Terminal Child

Semantics Interface in Ecore Semantics in JastAdd

EAttribute [derived] synthesized attribute, inherited attribute
EAttribute [derived, multiple] collection attribute

EReference [non-containment] collection attribute, reference attribute
EOperation synthesized attribute, inherited attribute

Fig. 3. Integrating Ecore and JastAdd.

In general, derived properties, non-containment references and operations that are
side-effect free are considered to be static semantics, whereas their semantics can be
specified using synthesized or inherited attributes (reference attributes in the case of a
non-containment reference). If the cardinality of a derived property or non-containment
reference is greater than one, often collection attributes [18, 19] are much more conve-
nient than ordinary attributes, since they permit to collect remotely located AST nodes
w.r.t. conditions and reference attributes. However, since JastAdd attributes can have
any valid Java type, it is also possible to specify ordinary attributes that represent col-
lections. Operations with side-effects should not be realized by attributes, but rather by
ordinary Java methods specified within JastAdd attribute specifications. Such intertype
declarations are woven by JastAdd as known from aspect weaving tools like Aspect]
[20].

JastEMF’s Integration Process To realise the integration of EMF and JastAdd, we
implemented JastEMF*. Given an Ecore metamodel with in JastAdd specified seman-
tics — a so called JastEMF integration project — JastEMF can be executed to generate
an integrated language implementation, i.e. an EMF metamodel implementation with
integrated JastAdd semantics. Integration projects must provide the following artefacts:

— An Ecore metamodel declaring the language’s abstract syntax.

— An Ecore generator model configurating EMF and JastEMF code generation.

— A set of JastAdd attribute specifications defining the language’s semantics that sat-
isfy the mappings defined for concepts in E.,,, (cf. Fig. 3).

Based on these artefacts, JastEMF’s generation process (cf. Figure 4) reuses the gen-
erators for JastAdd and EMF and merges the generated Java classes in accordance to the
introduced mapping. First, the process uses the EMF Generator Model, which is fed to
the (1) EMF Code Generator to generate an EMF Metamodel Implementation
and the (2) JastEMF JastAdd Adaptation Specification Genera-
tor to derive a JastAdd AST Specification and a JastAdd Repository Adaptation Spec-
ification. The Repository Adaptation Specification contributes attribute specifications

4 www . jastemf.org
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Fig. 4. JastEMF’s Generation Process.

that adapt the JastAdd Evaluator Implementation to use the EMF repository instead
of its own internal repository. As a second input the process requires the JastAdd Se-
mantics Specifications. The JastAdd AST Specification, the JastAdd Repository Adap-
tation Specification and the JastAdd Semantics Specifications are used by the (3)
JastAdd Compiler to generate a JastAdd Evaluator Implementation. To integrate
this Evaluator with the Metamodel Implementation it has to be refactored to incorporate
metamodel naming conventions and package structures. Therefore, the (4) JastEMF
Refactoring Generator derives a JDT? refactoring script from the metamodel
and applies it (5). For an overview of the refactorings applied we refer to [21]. Fi-
nally, the Refactored Evaluator Implementation is merged with the EMF Metamodel
Implementation using (6) EMF JMerge. This last step results in a metamodel im-
plementation with tightly integrated semantics, where semantic declarations from the
EMF metamodel are combined with their attribute-based specifications defined in the
JastAdd semantics.

With JastEMF the complexity of this integration process is completely hidden for
developers. Also, developers can work with EMF and JastAdd as usual.

5 SiPLE-Statemachines Case Study

In the following, we present the application of semantics-integrated metamodelling for
implementing SiPLE-Statemachine.

> http://www.eclipse.org/jdt/
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Fig. 5. SiPLE Metamodel.

Therefore, we discuss: (1) the application of EMF Ecore for specifying and inte-
grating SiPLE and SiPLE-Statemachine abstract syntax, (2) the application of JastAdd
for the specification of SiPLE and SiPLE-Statemachine static and execution seman-
tics, and (3) the application of JastEMF to generate an integrated SiPLE-Statemachine
implementation.

5.1 Modelling Abstract Syntax with EMF

SiPLE Abstract Syntax The SiPLE metamodel is presented in Figure 5. A Compila-
tionUnit consists of Declarations, which can be VariableDeclarations
declaring a variable’s name and type or ProcedureDeclarations declaring a pro-
cedure. Each procedure has a name, a return type, a list of parameters and a body that
is a Block. Each Block consists of a Statement sequence. In SiPLE, nearly ev-
erything is a Statement, such as While loops, If conditionals, Expressions,
Declarations and VariableAssignments. Expressions can be BinaryEx-—
pressions orUnaryExpressions, whose concrete sub-classes, e.g., Addition
and Not, are not presented in the figure. Furthermore, there are primitive expressions
such as Constants, References and ProcedureCalls.

The metamodel specifies a spanning tree (containment references, non-derived at-
tributes) enriched with semantics interfaces (non-containment references, derived at-
tributes, operations). For a better understanding, we assigned numbers to different parts
of the semantics interfaces declared in the metamodel. Parts that are to be computed

by name analysis are marked with e.g., each VariableAssignment and each
ProcedureCall in a well-formed program has a reference pointing to their respec-

tive declaration. Parts depending on type analysis are labeled by , e.g., the derived
attribute Type represents the actual type of an Expression.|3 |marked parts belong

11
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Fig. 6. SiPLE-Statemachine Metamodel.

to the constraint checking realization, which currently consists of the IsCorrect and

IsCorrectLocal attributes. Parts labeled with E (e.g., Interpret ()) declare
the execution semantics interface for both runtime evaluation and constant folding.

SiPLE-Statemachine Abstract Syntax The SiPLE-Statemachine metamodel is pre-
sented in Figure 6. A StateMachine consists of a set of State and Transition
Declarations. Each Transition has a label representing an event that trig-
gers the Transition. Furthermore, guard Expressions allow to specify boolean
SiPLE expressions as additional conditions for transition triggering and SiPLE Sta-
tements allow to annotate actions to states and transitions that are executed when a
state is entered or a transition is triggered respectively. Each Transition refersto a
source and a target State.

The metamodel’s semantics are an extension of the semantics used for the JastAdd
statemachine tutorial in [22]. Again, we assigned numbers to parts of the semantics in-
terface. As above, | 1 | marks parts belonging to name analysis. In SiPLE-Statemachine
name analysis is used to compute the actual source and target states from the corre-
sponding labels of a Transition object. Further semantics analysis that computes
additional information such as the successor relation and transitive closure of all states
reachable from a given state are labeled by . Parts that are used to parse textual action

and guard labels to appropriate SiPLE fragments are marked with @

5.2 Specifying Semantics with JastAdd

SiPLE Semantics There are four semantic concerns that completely specify SiPLE’s
static and execution semantics. With JastAdd, each concern can be specified as an as-
pect. A core specification is used to declare each concern’s semantics, i.e., to declare
all attributes (cf. Listing 1.2). The actual attribute definitions (the equations) reside in
separate JastAdd specifications®.

Listing 1.2. Excerpt from the SiPLE Core Specification
aspect NameAnalysis { // [1] in Figure 5

6 All specifications can be found at www.jastemf.org.
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/! Procedure name space:

inh Collection<ProcedureDeclaration> ASTNode.LookUpPDecl( String name);
syn ProcedureDeclaration ProcedureCall.Declaration ();

syn ProcedureDeclaration CompilationUnit.MainProcedure ();

// Variable name space:

inh Collection<VariableDeclaration> ASTNode.LookUpVDecl(String name);
syn VariableDeclaration Reference.Declaration ();

syn VariableDeclaration VariableAssignment.Declaration ();

aspect TypeAnalysis { // [2] in Figure 5
syn Type VariableDeclaration.Type();
syn Type VariableAssignment.Type();
syn Type ProcedureReturn.Type();
syn Type Expression.Type();
}
aspect ConstraintChecking { // [3] in Figure 5
syn boolean ASTNode.IsCorrect ();
syn boolean ASTNode.IsCorrectLocal ();

aspect Interpretation { // [4] in Figure 5
public abstract Object Expression.Value(State vm) throws InterpretationException;
public abstract void Statement.Interpret(State vm) throws InterpretationException;
syn State CompilationUnit. Interpret ();

NameAnalysis SiPLE uses separate block-structured namespaces for variable and pro-
cedure declarations. Although there is a single global scope in each Compilation—
Unit, each block introduces a new private scope, shadowing declarations in the outside
scope. No explicit symbol tables are required to resolve visible declarations — the AST
is the symbol table.

TypeAnalysis SiPLE is a statically, strongly typed language. For each kind of expres-
sion its type is computed from the types of its arguments, e.g., if an addition has a
Real number argument and an Integer argument the computed type will be Real.
Types are statically computed for arithmetic operations, assignments, conditionals (I £,
While), procedure calls and procedure returns.

ConstraintChecking Each language construct of a SiPLE program can be statically
checked for local correctness, i.e., whether the node representing the construct satisfies
all its context-sensitive language constraints or not. Of course, these checks are usually
just simple constraints specified based on SiPLE’s name and type analysis like “an If
condition’s type must be boolean” or “each reference must be declared”. If all nodes of
a (sub)tree — i.e., a program (fragment) — are local correct, the (sub)tree is correct.
Interpretation SiPLE’s execution semantics is also specified using JastAdd. We ap-
plied JastAdd’s ability to use Java method bodies for attribute specifications. This al-
lows for a seamless integration of a Java implementation of the operational semantics
and the declarative, RAG-based static semantics analysis. The interpretation is triggered
withacalltoaCompilationUnit’s Interpret () operation thatinitialises a state
object representing a stack for procedure frames and traverses the program’s statements
by calling their Interpret (State) operation.

SiPLE-Statemachine Semantics The SiPLE-Statemachine semantics is mainly speci-
fied in three JastAdd aspects which are shown in Listing 1.3. The original source comes
from [22]. To integrate SiPLE, we additionally introduced a SiPLEComposition
aspect.
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Listing 1.3. Excerpt from the SiPLE-Statemachine Core Specification

aspect NameAnalysis { // [1] in Figure 6
syn lazy State Transition.source ();
syn lazy State Transition.target();
inh State Declaration.lookup(String label);
syn State Declaration.localLookup(String label);

}

aspect Reachability{ // [5] in Figure 6
syn EList State.successors() circular [...];
syn EList State.reachable() circular [...];

aspect SiPLEComposition { // [6] in Figure 6
public Statement Action.getActionStatement ();
public Expression Transition.getGuardExpression ();
public Statement Transition.getActionStatement ();

NameAnalysis In SiPLE-Statemachine, name analysis maps textual labels in transi-
tions to states. Since states are not block-structured, all declarations of the statemachine
are traversed and each state label is compared to the looked up label. Note that a graph-
ical editor may set a transition’s source and target state directly.

Reachability The synthesized successor attribute computes a state’s direct succes-
sor relation from the set of declared transitions. In contrast to the original example, we
declared the attribute to be an EList to achieve better graphical editor support and
as circular because of editor notifications issues. Based on the successor relation, the
reachable attribute computes a state’s transitive closure, which can be displayed on
demand in a graphical editor we generated for SiPLE-Statemachines.
SipleComposition This helper aspect uses the SiPLE parser to parse and embed SiPLE
Expressions and SiPLE Statements for guard and action labels. Actually, these
parts belong to SiPLE and are integrated into SiPLE-Statemachine (cf. 6). However,
since JastAdd does not support packages and always generates AST classes for the
given AST specifications instead of reusing classes from existing packages as supported
by the EMF, we had to model them as attributes.

5.3 Integration with Further Metamodelling Tools

To prepare the evaluation of JastEMF’s integration approach we applied several meta-
modelling tools for further implementation tasks. As our focus is about the specification
of semantics for metamodels using RAGs, we shortly describe their purpose but refer
to respective publications for details:

— To generate a parser and an advanced text editor for SiPLE we use EMFText [9].
Amongst others, the generated editor supports syntax highlighting, code comple-
tion, outline and a properties view.

— To provide a graphical syntax for SiPLE-Statemachine we used EuGENia’, a tool
that processes specific metaclass annotations to generate based on their informa-
tion (node or transition, shape, style, color, etc.) an according set of GMF [2]
specifications. From such specifications the GMF framework then generates a well-
integrated, powerful graphical editor for the SiPLE-Statemachine language (cf. Fig-
ure 2).

7 http://www.eclipse.org/gmt/epsilon/doc/articles/eugenia-gmf-tutorial/
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— To make SiPLE-Statemachine executable, we use an XPand [7] template to gener-
ate plain SiPLE code, which can be executed by a call to its CompilationUnit’s
Interpret operation.

6 Evaluation

In this section we evaluate JastEMF based on our experience with the SiPLE-Statema-
chines case study and w.r.t. the semantics-integrated metamodelling capabilities pre-
sented in section 2.2. Afterwards, we discuss limitations of our approach and further
experiences in applying JastEMF that motivate deeper investigation and future work.

6.1 Evaluating the Capabilities of Integrated Metamodelling

The JastEMF integration process (cf. Section 4.3 Figure 4) is completely steered by a
standard Ecore generator model, the according Ecore metamodel and a set of standard
JastAdd specifications. For constructing, manipulating, validating and reasoning about
the input metamodel and semantic specifications all the tools available for the respective
artefact can be reused. Furthermore, the process reuses the EMF and JastAdd tooling
for code generation and all applied refactorings and code merges retain the metamodel
implementation’s API.

Consequently, the key capabilities metamodelling abstraction (MM 1), metamodel
implementation generators (MM 3), semantics abstraction (AG 1) and semantics gen-
erators (AG 3) are provided by JastEMF.

JastEMF also provides metamodelling tooling compatibility (MM 5). This is well
demonstrated in the SiPLE-Statemachines case study by:

— Using the model-driven template language XPand to generate SiPLE code for sta-
temachines (MM 5.2). In general, model-driven template languages heavily bene-
fit from semantics-integrated metamodelling, because computed semantics can be
reused within templates.

— Using EMFText to generate a text-to-model parser (MM 5.3).

— Using the generic, tree-based EMF model editor shipped with EMF that seamlessly
integrates semantics in its properties view (MM 5.4). Thus, models can be inter-
actively edited, their semantics browsed and semantic values manually changed,
whereas dependend semantics are automatically updated.

— Using EMFText and EuGENia/GMF to generate advanced SiPLE and SiPLE-Sta-
temachine editors with integrated semantics (MM S5.5).

Regarding metamodelling and semantics consistency (MM 2, AG 2) JastEMF’s
integration approach has to be evaluated from two perspectives: First, the individual
consistency of the Ecore metamodel and the JastAdd specifications should and can
be checked reusing their respective tooling. Second, in semantics integrated metamod-
elling the consistency of the mapping between syntax and semantics specifications (cf.
Figure 3) has to be considered. As the JastEMF integration process (cf. Figure 4 )
automatically derives a JastAdd AST specification from the Ecore metamodel, JastEMF
provides such consistency for concepts in E,, , . However, JastEMF does not yet check

15



the correctness of the semantics mapping (Esem,, ), Which we like to improve in the fu-
ture by an additional analysis step integrated in JastEMF.

Metamodel and model compatibility (MM 4) and semantics modularity (AG 4)
both relate to extensibility, reuse and modularisation. In the EMF, metamodel and
model compatibility helps to integrate existing languages, their tooling and models —
i.e., to reuse existing metamodel implementations. Therefore, Ecore supports import-
ing and referencing metaclasses and their implementation from other metamodels. For
such reuse scenarios JastAdd has no appropriate mechanism. AST specifications can
be combined from several specifications, but JastAdd always generates a new evalua-
tor implementation and does not support the reuse of existing AST classes and their
semantics. Consequently, reuse can only be achieved on the specification, but not im-
plementation level. This limitation could be addressed by extending the JastAdd AST
specification language with a packaging and package import concept that conforms to
Ecore’s metamodel imports®.

On the other hand, JastAdd’s aspect mechanism and weaving capabilities permit
semantic extensions of languages by contributing new attributes (and node types) to
an existing abstract syntax. As the EMF does not support the external contribution of
structural features to existing metaclasses, the original metamodel needs to be changed
to incorporate semantic extensions. This is a severe drawback considering incremental
metamodel evolution that motivates further research on advancing modularity in future
metamodelling approaches.

6.2 Limitations and Further Issues

JastAdd Rewrite Issues JastAdd is not only a RAG system, but also supports local,
constrained rewrites that are executed as soon as a node with an applicable rewrite is
accessed. Within rewrites new nodes can be constructed and existing ones rearranged.
We observed that in EMF such AST rearrangements in the combination with tree copies
can lead to broken ASTs. Therefore, JastEMF does not support JastAdd rewrites.

Semantics of Incomplete Models In dynamic environments such as the EMF, syntac-
tically incomplete models are common throughout editor sessions. However, semantics
of syntactically erroneous models are not defined and typically their evaluation fails
with an exception. To our experience, most interactive modelling tools do not shield
editor users before such exceptions. There is a need for more sensitive consideration of
semantics in metamodelling frameworks and associated tooling, such that users are not
disturbed by semantic exceptions caused by syntactically erroneous structures.

For future work, we consider the investigation of incremental AGs [23,24], which
trace attribute dependencies to reduce the recomputation overhead in the presence of
frequent context information changes, to address these issues. Metamodelling tools

% To by-pass the problem, we introduced simple helper properties and attributes in the SiPLE-
Statemachines case study. The properties hold specified entry actions, guard expressions and
transition actions as ordinary Java strings whereas the attributes initialise SiPLE’s parser to
transform these strings into appropriate SiPLE ASTs.
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could use their attribute dependency knowledge to decide whether an attribute is de-
fined or not. If an attribute is not defined — i.e., depends on missing model parts — its
evaluation could be delayed to prevent it from throwing an exception.

In summary, we think, that JastEMF’s benefits clearly outweigh the remaining tech-
nical problems. It demonstrates, that RAGs contribute declarativeness, well-foundness,
generativeness and ease of specification for semantics-integrated metamodelling. On
the other hand, metamodels and their accompanying frameworks provide convenient
means to specify the API of AG generated tools and prepare their integration into soft-
ware development platforms.

7 Related Work

There are a number of approaches related to and dealing with metamodel semantics.
In particular we distinguish related work that (1) can benefit from our approach, like
concrete syntax mapping tools and (2) propose alternative solutions, like constraint
languages, integrated metamodelling environments, graph-grammars or abstract state
machines. In the following we investigate each of them.

Textual concrete syntax mapping tools like EMFText [9] and MontiCore [10] com-
bine existing parser generator technology with metamodelling technology to realize
text-to-model parser generators [25]. They enable users to generate powerful text edi-
tors including features such as code completion and pretty printing. However, semantics
analysis is often neglected or involves proprietary meachanims for implementing a sub-
set of static semantics like name analysis manually. Such tools could immediately profit
from our integration of formal semantics in metamodelling.

Constraint languages like the OCL [16] or XCheck [7] enable the specification of
well-formedness constraints on metamodels. The rationale behind OCL is to define in-
variants that check for context-sensitive well-formedness of models and to compute
simple derived values. However we are not aware of any application of OCL for the
specification of complete static semantics. In comparison AGs do not focus on con-
straint definitions, but are widely applied for semantics specification and provide ad-
vanced means to efficiently derive the context-sensitive information language constraints
usually depend on®.

Integrated metamodelling environments provide dedicated languages to specify ab-
stract syntax and semantics but often lack a formal background. Usually semantics have
to be specified using a special constraint language and a special operational (i.e. imper-
ative) programming language, both tightly integrated with a metamodelling language
and its framework.

? E.g., consider the specification of a data-flow analysis as presented in [26].
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A typical representative is Kermeta [27]. A language in Kermeta is developed by
specifying its abstract syntax with an Essential MOF (EMOF) metamodel and static se-
mantics with OCL constraints. Execution semantics can be implemented using a third
imperative programming language. Abstract syntax, static semantics and execution se-
mantics are developed in modules that can be combined using Kermeta’s aspect lan-
guage. The modularization concept supported by Kermeta’s aspect language seems very
similar to the aspect concept of JastAdd: They both support the separation of cross-
cutting semantic concerns. Additionally, Kermeta and JastEMF projects immediately
benefit from EMF tooling in Eclipse.

Our main concern about such integrated metamodelling environments is the over-
head for developers to learn and apply all their different proprietary languages. We
believe that JastAdd’s seamless integration with Java has two main benefits: (1) one
can rely on Java’s standardised and well-known semantics and (2) the smooth learning
curve from Java to declarative semantics specification reduces the initial effort for using
JastAdd.

Graph-grammars are a convenient approach not only to specify structures — i.e.
metamodels’ abstract syntax — but also operations on these structures — i.e. meta-
model semantics. Given such specifications, graph rewrite systems can be used to de-
rive appropriate repository implementations and semantics [28]. The main advantages
of the graph-grammar approach are its well-founded theoretical background and its uni-
form character where syntax and semantics can be specified within a single formalism.

PROGRESS An important research project, that exploited graph-grammars for tool
development and integration, has been the IPSEN project [28]. Its programming
language PROGRESS (PROgramming with Graph REwriting Systems) supports
the specification of graph schemas (i.e. metamodels), graph queries and graph trans-
formations (i.e. semantics). PROGRESS graph schemas rely on attributed graph
grammars to specify node attributes and their derived values. Though, attributed
graph-grammars should not be confused with AGs. Attributed graph-grammars
have no distinction between inherited and synthesized attributes and consequently
lack many convenient AG concepts like broadcasting. In summary, the IPSEN
project demonstrated, that graph-grammars are a convenient formalism to specify
a broad range of tools and automatically integrate their repositories and semantics.

FUJABA A more recent graph rewriting tool is FUJABA [29], which integrates Uni-
fied Modelling Language (UML) class diagrams and graph rewriting to specify
semantics of class operations. It provides story driven modelling as a visual lan-
guage to define rewrite rules, which can be compared to UML activity diagrams.
MOFLON [30] adapts FUJABA to support the Meta Object Faclility (MOF) as a
modelling language.

In general we think, that graph-rewriting systems are harder to understand than AGs.
Given a set of rewrite rules, it is complicated to foresee all possible consequences of
their application on start graphs. Rewrite results usually depend on the order of rule
applications. To solve this problem, it is necessary to ensure that the rewrite system
is confluent, which implies a lot of additional effort, not only for the proof of conflu-
ence, but also for the design of appropriate stratification rules. On the other hand, AGs
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require a basic context-free structure or a spanning tree they are defined on whereas
graph rewriting does not rely on such assumptions. Furthermore, RAGs can only add
information to an AST but not remove them or even change its structure. However,
there are AG concepts such as higher order attributes [15] (non-terminal attributes in
JastAdd) or JastAdd’s local rewrite capabilities which improve in that direction.

Abstract State Machines (ASMs) are a theoretically backed approach to specify exe-
cution semantics [14]. For the specification of metamodel semantics they were recently
applied in [31] to define sets of minimal modelling languages with well defined ASM
semantics — so called semantic units. The semantics of an arbitrary modelling language
L can now be defined by a mapping of L to such semantic units (semantic anchoring).
Of course, the transformation to semantic units and context-sensitive well-formedness
constraints (i.e., static semantics) still have to be defined using other approaches. Thus,
ASMs and our RAG approach complement each other for the purpose to specify meta-
models’ execution and static semantics.

8 Conclusion

In this paper we presented the application of RAGs for metamodel semantics. We
sketched necessary foundations — essentially that most metamodelling languages can
be decomposed into context-free and context-sensitive language constructs — and pre-
sented JastEMF, an example integration of the EMF metamodelling framework and
the JastAdd RAG system. Finally, we demonstrated and evaluated the advantages and
limitations of our approach by a case study, which is exemplary for both compiler con-
struction (SiPLE) and metamodelling (statemachines). This shows, that for MDSD the
well-investigated formalism of RAGs is a valuable approach for specifying metamodel
semantics and on the other hand, MDSD introduces interesting application areas and
new challenges for RAG tools.
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