
HAUPTBEITRAG

https://doi.org/10.1007/s00287-023-01533-z
Informatik Spektrum (2023) 46:96–103

Safe and secure system architectures for cyber-physical systems

Frank J. Furrer1

Accepted: 20 December 2022 / Published online: 3 April 2023
© The Author(s) 2023

Abstract
Cyber-physical systems are at the core of our current civilization. Countless examples dominate our daily life and work, such
as driverless cars that will soon master our roads, implanted medical devices that will improve many lives, and industrial
control systems that control production and infrastructure. Because cyber-physical systems manipulate the real world, they
constitute a danger for many applications. Therefore, their safety and security are essential properties of these indispensable
systems. The long history of systems engineering has demonstrated that the system quality properties—such as safety and
security—strongly depend on the underlying system architecture. Satisfactory system quality properties can only be ensured
if the fundamental system architecture is sound! The development of dependable cyber-physical architectures in recent
years suggests that two harmonical architectures are required: a design-time architecture and a run-time architecture. The
design-time architecture defines and specifies all parts and relationships, assuring the required system quality properties.
However, in today’s complex systems, ensuring all quality properties in all operating conditions during design time will
never be possible. Therefore, an additional line of defense against safety accidents and security incidents is indispensable:
This must be provided by the run-time architecture. The run-time architecture primarily consists of a protective shell
that monitors the run-time system during operation. It detects anomalies in system behavior, interface functioning, or
data—often using artificial intelligence algorithms—and takes autonomous mitigation measures, thus attempting to prevent
imminent safety accidents or security incidents before they occur. This paper’s core is the protective shell as a run-time
protection mechanism for cyber-physical systems. The paper has the form of an introductory tutorial and includes focused
references.

Context

Introduction

Cyber-physical systems are computer-controlled, networked
systems that interact with the physical environment, often
in a control loop, some of them in an autonomous way
[1–6]. Typical examples include autonomous cars, autopilot
in an airplane, a heart pacemaker, or cooperating robots in
a manufacturing line. Because of their impact on the real-
world, cyber-physical systems must be built so that they
cannot harm or damage people, property, or the environ-
ment: Their behavior must be safe and secure. Engineering
safe and secure cyber-physical systems has become a spe-
cific, exciting, and essential engineering discipline.

� Frank J. Furrer
frank.j.furrer@bluewin.ch

1 Faculty of Computer Science, Technical University of
Dresden, Dresden, Germany

A long time ago, computers were just processing data,
such as keeping accounts or managing inventory. Then they
slowly started interacting with the physical world, for exam-
ple, in the form of embedded computers controlling a com-
bustion engine or as supervisory control and data acquisi-
tion (SCADA) systems governing industrial plants. Today,
computers controlling all sorts of cyber-physical systems
are pervasive—we find them everywhere. They have taken
over control from small devices like a heart pacemaker to
large applications, such as an autonomous container ship.

The system receives information about the environment
from sensors (temperature, wheel rotation rate, camera,
radar, gyroscope, etc.) and acts on the physical environment
through actuators (motors, pumps, valves, etc.). The system
comprises a number of interacting control algorithms, many
of them closed-loop feedback algorithms. Some of these al-
gorithms are based on self-learning (machine learning), for
example, an autonomous vehicle’s video processing soft-
ware.

K

https://doi.org/10.1007/s00287-023-01533-z
http://crossmark.crossref.org/dialog/?doi=10.1007/s00287-023-01533-z&domain=pdf


Informatik Spektrum (2023) 46:96–103 97

Software

Cyber-physical systems are controlled by software, that
is, most of their functionality is implemented in software.
Control by software carries some risks: A failure, fault,
error, or successful cyber-attack—either in the software or
in the execution platform—can have grave consequences,
such as safety accidents, security incidents, crashes, or
casualties. In today’s environment, malicious interactions,
such as hacking, malware, infiltration, etc., can also inhibit
the correct operation and lead to dangerous consequences.
Therefore, the quality properties of the cyber-physical
system—especially safety and security—must be assured
during all phases of system development, operation, and
evolution [7–12].

Architecture

At the heart of a cyber-physical system is its architecture
[13–16]: “Fundamental concepts or properties of an entity
in its environment (= Context of surrounding things, condi-
tions, or influences upon an entity) and governing princi-
ples for the realization and evolution of this entity and its
related life cycle processes” [17]. A long—and sometimes
painful—history of systems has proven that adequate, sound
architecture is indispensable [18]. The architecture provides
the foundation for the efficient development and evolution
of the cyber-physical system and enables to a large extent
also the quality properties!

Safety and security

The list of a system’s possible quality properties/attributes
is extensive (e.g.: https://en.wikipedia.org/wiki/List_of_
system_quality_attributes). For the cyber-physical system,
the essential quality properties are safety (e.g.: [19]) and
security (e.g.: [20, 21]).

Drift into failure

Fortunately, most modern system engineering processes are
strongly safety and security aware [22–26]. In the majority
of cases, these processes produce dependable and trustwor-
thy systems. The organizations which make cyber-physical
systems are almost always careful and diligent. Nonethe-
less, the press regularly reports security incidents and safety
accidents. Why the discrepancy?

There are many reasons. First, the enormous complex-
ity of today’s (and even more: tomorrow’s!) cyber-physical
systems makes it impossible to avoid all vulnerabilities.
Second, the operating environment of these systems be-
comes more hostile every year (higher probability of fail-
ures, greater sophistication of malicious activities). Third,

the market pressure demands low development and produc-
tion cost. Fourth, the high rate of change often entices the
developers to “cut corners,” that is, reduce or skip neces-
sary quality assurance measures, such as modeling, reviews,
verification, validation, and thorough testing. The result is
an accumulation of technical debt [18, 26] and architec-
ture erosion [18, 27]. This slow, hardly noticeable effect is
called drift into failure [28] and constitutes a grave risk for
evolving cyber-physical systems.

Last defense

As numerous examples show beyond doubt, it is not pos-
sible to eliminate all vulnerabilities from a complex cyber-
physical system during development/extension/deployment
time. Unfortunately, a likelihood always exists that the sys-
tem will experience a security incident or generate a safety
accident during operation.

Are there mechanisms other than a very diligent devel-
opment process to reduce the impact/damage of a security
incident or a safety accident? Fortunately, the answer is
yes and reads: Run-Time Monitoring [29–34]. In run-time
monitoring, the system’s behavior is observed and automat-
ically checked for compliance against the desired behavior.
The desired behavior is defined in policies, specifications,
rules, or models. The run-time monitor attempts to identify
anomalies, that is, any deviation from the desired behavior.
Preferably, the run-time monitor works in real-time: In this
case, the monitor can detect, inhibit, or mitigate anoma-
lous behavior before a safety accident or a security inci-
dent occur. The run-time monitor, therefore, acts as a last
line of defense (Fig. 1): The system’s engineering process
attempts to eliminate the vulnerabilities in the system. How-
ever, a (hopefully small) number of vulnerabilities remain
in the run-time system! A malicious threat or an unforeseen
failure in the run-time system can thus provoke a security
incident or generate a safety accident. If the run-time mon-
itor works correctly and in real-time, it may prevent—or at
least substantially reduce the negative impact—of the secu-
rity incident or the safety accident. The functionality of the
run-time monitor thus forms the last line of defense of the
cyber-physical system!

Run-timemonitoring and protective shell

Run-timemonitoring principle

“Run-Time Monitoring as a Last Line of Defense” of a cy-
ber-physical system is used increasingly in various indus-
tries (e.g.: [31, 35]). The principle of run-time monitoring is
explained in Fig. 2: The real behavior is continuously com-

K

https://en.wikipedia.org/wiki/List_of_system_quality_attributes
https://en.wikipedia.org/wiki/List_of_system_quality_attributes


98 Informatik Spektrum (2023) 46:96–103

Fig. 1 Run-time monitoring as
last defense

DeploymentSecurity- and Safety- aware
Systems Engineering Process

Vulnerability

Malicious
Threat

Failure

Last Defense:
Run- Tim

e M
onitoring

Run-Time System

Fig. 2 Run-time monitoring
principle

Design-Time Architecture
[Run-Time System]

Vulnerabili�es Threats Failures

Real Behavior Desired Behavior

Opera�onal
Data

Log
Files

Func�onal
Specifica�ons

Policies

Context

Models

Compare Rules

Correc�ve Ac�on

pared to the desired behavior. The desired behavior can be
defined by a number of techniques:

� The functional specifications, expressed in a formal, ma-
chine-readable language (e.g.: [34, 40, 41]).

� A set of policies, expressed in a formal, machine-read-
able language [42].

� A set of rules, expressed in a formal, machine-readable
language [32].

� Structural and behavioral models, expressed in a formal,
machine-readable language [43, 44].

� In addition, the comparison makes use of information,
such as operational data, log files, and the context (envi-
ronment, partner systems, public information).

If a deviation of the real behavior from the desired be-
havior is detected, the run-time monitor takes corrective
action, whenever possible in real-time. Many types of cor-
rective actions are possible, all aiming to avoid or reduce
the negative impact of a safety accident or security incident
[12].

Using run-time monitoring (often called “active run-time
monitoring” because of its real-time intervention capabili-
ties) requires two types of system architecture:

1. The design-time architecture
2. The run-time architecture

Design-time architecture

The design-time architecture aims to avoid as many vul-
nerabilities in the system as possible. This is achieved by
a diligent, security- and safety-aware system’s engineering
process and a subsequent vulnerability elimination process
(Fig. 3: e.g.: [10]).

Run-time architecture

As soon as the design-time architecture of the cyber-phys-
ical system is judged to be sufficiently safe and secure, the
system is deployed, that is, transferred to its operational
environment and handed over to the users (Fig. 3). Unfor-

K



Informatik Spektrum (2023) 46:96–103 99

Fig. 3 Design-time architecture

Func�onal
Requirements

Security 
Requirements

Safety
Requirements

Design-Time Architecture

Deployment

Run-Time Architecture

Sy
st

em
s

En
gi

ne
er

in
g/

De
ve

lo
pm

en
t

Pr
oc

es
s

Vulnerability

Vulnerability Elimina�on Process
Model Checking, Valida�on, Verifica�on, 
Tes�ng, Chaos Engineering, …

Fig. 4 Run-time architecture

Design-Time Architecture

Deployment

Run-Time Architecture

Vulnerabili�es Failures

Threats

Run-Time Monitoring
«Protec�ve Shell»

tunately, the run-time system may still contain vulnerabili-
ties—which constitute a considerable risk for its usage.

Therefore, an additional architectural element protects
the run-time system: the (active) run-time monitoring
(Fig. 4). The run-time monitoring embraces the run-time
system and attempts to protect it from the impact and the
consequences of threats and failures—whenever possible in
real-time. This additional layer of protection can be seen as
a protective shell that enfolds the running system. The idea
of a protective shell as a separate architectural element and
engineering artifact was presumably introduced by Lance
Eliot under the name of “AI Guardian Angel Bots” for
systems controlled by machine learning [36]. Here, the less
exotic name Protective Shell is preferred [12].

Protective shell

The engineering design and the capabilities of a protective
shell strongly depend on the run-time system to be pro-

tected. A generic architecture of a system with a protective
shell is shown in Fig. 5. In the core of Fig. 5, the operational
cyber-physical run-time system, including its interfaces to
the real world and the network connections, is featured.
Enfolding the run-time system is the protective shell. The
protective shell disposes of more information than the run-
time system from additional sources, possibly even from
additional hardware. Examples of additional information
sources include (Fig. 5):

� Operational data, log files, functional specifications, be-
havior models, policies, and specific rule sets

� Context information (From the environment, from other
systems, from public sources, etc.)

� From access to the sensors (inputs) and actuators (out-
puts), possibly even using additional sensors or measur-
ing instruments

� From the network usage, monitoring, and logging

In addition to traditional techniques, such as range and
rate checks of sensors, and discrepancy and plausibility

K



100 Informatik Spektrum (2023) 46:96–103

Fig. 5 Protective shell

Run-Time System

© 123rf.com
Used with permission
15.11.2019

Range, Plausibility, …
Checks

Opera�onal
Data

Log
Files

Func�onal
Specifica�on,

Policies

Block, correct, override

Interlock, Plausibility, …
Checks

Updates

Protec�ve Shell Intervention
Mitigation

Big Data Analy�cs
Anomaly Detec�on

Func�onal Divergence Detec�on

N
et

w
or

k

Users

Partner Systems

Ac
ce

ss
Co

nt
ro

l

Context

Fig. 6 Protection against emer-
gent behavior

Malicious
Threat

Failure

LastDefense:
Run- Tim

e M
onitoring

Run-Time System-of-Systems

� Emergent Behavior
� Emergent Proper�es

Cons�tuent
System

Cons�tuent
System

Cons�tuent
System

Cons�tuent
System

Cons�tuent
System

�

Vulnerability

Cons�tuent
System

Cons�tuent
System

Cons�tuent
System

Cons�tuent
System

Cons�tuent
System

checks on actuator values, the protective shell often uses
artificial intelligence and machine learning to detect anoma-
lies [37–39, 45, 46, 50]. Any anomaly in behavior detected
is immediately analyzed, assessed, and corrective actions
are taken. Corrective action may include stopping the sys-
tem, leading the system into a safe state, or into a safe
degraded operation.

Emergent behavior

Most cyber-physical systems today consist not of one sin-
gle, homogeneous system but are assembled from vari-
ous constituent systems—thus forming a system-of-systems
(Fig. 6; [51, 52]). A number of self-contained systems with
specific functionality are interconnected to realize higher-
level objectives. By combining the functionality of the con-
stituent systems, superior functionality can be achieved,
which cannot be provided by any of the constituent systems

alone. An example is the various driver assistance systems
in modern cars, such as lane-keeping, distance control, elec-
tronic stability control, traffic sign recognition, emergency
braking capability, obstacle detection, automatic speed lim-
iter, and airbags. Individually they offer assistance for spe-
cific potential accident situations. However, if the function-
ality of these systems is combined, a much safer car re-
sults. The emerging functionality from combining obstacle
recognition with automatic emergency braking capability
and electronic stability control will prevent significantly
more accidents than each of the individual systems pos-
sibly could. This desired, valuable emergent functionality
is the reason why the system-of-systems is designed and
built!

Unfortunately, assembling system-of-systems from their
constituent systems can also generate unexpected, un-
desired, potentially damaging behavior. The constituent
systems’ interconnection may generate unexpected failure
modes, unanticipated system weaknesses, or new attack

K



Informatik Spektrum (2023) 46:96–103 101

Fig. 7 Autonomy and machine
learning

Malicious Threat
Intentional Deceit

Failure
Unexpected Operating Condition

LastDefense:
Run- Tim

e M
onitoring

Run-Time System-of-Systems

� Unpredictable Behavior
� Autonomous Decisions

Vulnerability

Cons�tuent
System

Cons�tuent
System

Autonomous
Decisions

Machine
Learning

Cons�tuent
System

Cons�tuent
System

Cons�tuent
System

Autonomous
Decisions

Machine
Learning

Cons�tuent
System

avenues—as negative, unintentional emergence [53, 54]!
It could be suggested that a protective shell is the only
defense against unexpected, dangerous emergent behavior.

Autonomy andmachine learning

Modern cyber-physical systems exhibit a strong tendency
towards autonomous behavior (e.g.: [55]): Such systems
can change their behavior due to learning from experience
or in response to unanticipated situations during operation.
They are characterized by computers (i.e., software) making
decisions affecting the physical world, such as autonomous
vehicles. In many applications, these decisions are based
on machine-learning algorithms [56–58], such as recog-
nizing obstacles, their trajectories, and speeds from video,
radar, or lidar images. Often, the machine-learning algo-
rithms are not based on deterministic calculations but, for
example, on statistical or training data evaluation. This can
introduce a high degree of uncertainty and unpredictabil-
ity in the autonomous system [36, 56, 59], which, in turn,
introduces the risk of safety accidents or security inci-
dents. Again, anomaly detection during run-time would be
the last defense because predicting, assessing, and mitigat-
ing all safety and security risks during the development/
deployment process is improbable in the context of auton-
omy and machine learning (Fig. 7).

Conclusions

A protective shell is a technique that can significantly en-
hance the safety and security of cyber-physical systems at
run-time. It is a current, active research area, and some in-
dustries producing mission-critical cyber-physical systems
are already implementing it.

However, the challenges of implementing a protective
shell are that:

� Using a protective shell requires a very high degree of
formalization for reliable anomaly detection [47].

� Designing a protective shell to protect against damag-
ing run-time behavior is a highly challenging engineering
task.

� The protective shell consumes additional run-time re-
sources (power, CPU, memory).

� Designing and implementing a protective shell needs
highly educated engineers [48].

� The protective shell’s code and data increase the system’s
complexity, which may generate additional failure modes
and possibly also enlarges the attack surface [49].

Open Access This article is licensed under a Creative Commons At-
tribution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included
in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/by/4.
0/.

References

1. Alur R (2015) Principles of cyber-physical systems. MIT Press,
Cambridge

2. Kravets AG, Bolshakov AA, Shcherbakov MV (eds) (2020) Cy-
ber-physical systems—Industry 4.0 challenges. Springer Nature
Switzerland, Cham

3. Möller DPF (2016) Guide to computing fundamentals in cyber-
physical systems—Concepts, design methods, and applications.
Springer, Cham

4. Rawat DB, Rodriques JJPC, Stojmenovic I (eds) (2016) Cyber-
physical systems—From theory to practice. CRC Press, Boca Raton

K

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


102 Informatik Spektrum (2023) 46:96–103

5. Romanosky A, Ishikawa F (eds) (2017) Trustworthy cyber-physical
systems engineering. CRC Press, Boca Raton

6. Song H, Rawat DB, Jeschke S, Brecher C (eds) (2016) Cyber-phys-
ical systems—Foundations, principles, and applications. Academic
Press, London

7. Boulanger J-L (2013) Safety management of software-based equip-
ment. John Wiley & Sons Inc, Hoboken

8. Dowd M, McDonald J, Schuh J (2006) The Art of software secu-
rity assessment—Identifying and preventing software vulnerabili-
ties. Addison-Wesley, Upper Saddle River

9. Hobbs C (2020) Embedded software development for safety-critical
systems, 2nd edn. CRC Press, Boca Raton

10. Knight J (2012) Fundamentals of dependable computing for soft-
ware engineers. CRC Press, Boca Raton

11. McGraw GR (2006) Software security—Building security. Addison
Wesley, Upper Saddle River

12. Furrer FJ (2022) Safety and security of cyber-physical systems.
Springer Vieweg, Wiesbaden

13. Nakajima S, Talpin J-P, Toyoshim M, Yu H (eds) (2017) Cyber-
physical system design from an architecture analysis viewpoint.
Springer Nature, Singapore

14. Liu C, Zhang Y (eds) (2019) Cyber-physical systems: Architec-
tures, protocols, and applications. CRC Press, Boca Raton

15. Bass L, Clements P, Katzman R (2013) Software architecture in
practice, 3rd edn. Pearson education, SEI-series. Addison-Wesley,
Upper Saddle River

16. Rozanski N, Woods E (2012) Software systems architecture,
2nd edn. Addison-Wesley, Upper Saddle River

17. ISO/IEC/IEEE 42010:2022 (2022) Software, systems, and en-
terprise—Architecture description. https://www.iso.org/standard/
74393.html. Accessed 10 Dec 2022

18. Furrer FJ (2019) Future-proof software-systems—A sustainable
evolution strategy. Springer Vieweg, Wiesbaden. ISBN 978-3-658-
19937-1.

19. Bahr NJ (2017) System safety engineering and risk assessment: a
practical approach, 2nd edn. CRC Press, Boca Raton

20. Song H, Fink GA, Jeschke S (2018) Security and privacy in cyber-
physical systems: foundations, principles, and applications. Wiley-
IEEE, Hoboken

21. Brooks CJ, Craig PA Jr. (2022) Practical industrial cybersecurity:
ICS, industry 4.0, and IIoT. John Wiley & Sons Inc, Hoboken

22. Axelrod CW (2012) Engineering safe and secure software systems.
Artech House, Norwood

23. Deogun D, Bergh Johnsson D, Sawano D (2019) Secure by design.
Manning, Shelter Island

24. Ackerman P (2021) Industrial cybersecurity: Efficiently monitor
the cybersecurity posture of your ICS environment, 2nd edn. Packt,
Birmingham

25. Hobbs C (2020) Embedded software development for safety-critical
systems. CRC Press, Boca Raton

26. Kruchten P, Nord R, Ozkaya I (2019) Managing technical debt: re-
ducing friction in software development. Pearson Education, Lon-
don

27. Fairbanks G (2010) Just enough software architecture: a risk-driven
approach. Marshall & Brainerd, Boulder

28. Dekker S (2011) Drift into failure: from hunting broken compo-
nents to understanding complex systems. CRC Press, Boca Raton

29. Bartocci E, Falcone Y (eds) (2019) Lectures on runtime verifica-
tion—Introductory and advanced topics. Springer Nature, Cham

30. Drusinsky D (2006) Modeling and verification using UML state-
charts—A working guide to reactive system design, run-time mon-
itoring, and execution-based model checking. Newnes, Burlington

31. Harrison L (2020) How to use run-time monitoring for automo-
tive functional safety. https://www.techdesignforums.com/practice/
technique/how-to-use-runtime-monitoring-for-automotive-

functional-safety. Accessed 14 Dec 2022 (TechDesignForum White
Paper)

32. Bhardwaj Haupt N, Liggesmeyer P (2019) A runtime safety
monitoring approach for adaptable autonomous systems. In: Ro-
manovsky A, Troubitsyna E, Gashi I, Schoitsch E, Bitsch F (eds)
Computer safety, reliability, and security. SAFECOMP 2019. Lec-
ture notes in computer science, vol 11699. Springer, Cham

33. Kane A (2015) Run-time monitoring for safety-critical embed-
ded systems. Ph.D.Thesis, Carnegie Mellon University, Pittsburgh.
https://users.ece.cmu.edu/. Accessed 14 Dec 2022

34. Taimoor Khan M, Serpanos D, Shrobe H (2016) Sound and
complete run-time security monitor for application software.
Preprint, arXiv:1601.04263v1 [cs.CR]. https://www.researchgate.
net/publication/291229626_Sound_and_Complete_Runtime_
Security_Monitor_for_Application_Software. Accessed 12 Dec
2021

35. Janicke H, Nicholson A, Webber S, Cau A (2015) Run-time-mon-
itoring for industrial control systems. Electronics 4(4):995–1017.
https://doi.org/10.3390/electronics4040995

36. Eliot L (2016) AI guardian angel bots for deep AI trustworthiness:
practical advances in artificial intelligence (AI) and machine learn-
ing. LBE

37. Weber H (2019) Big data: a complete guide to the basic concepts in
data science, cyber security, analytics and metrics

38. Prabhu CSR, Chivukula AS,Mogadala A, Ghosh R, Livingston LMJ
(2019) Big data analytics: systems, algorithms, applications.
Springer Nature, Singapore

39. LiM (2022) Multi-fractal traffic and anomaly detection in computer
communications. CRC Press, Boca Raton

40. O’Regan G (2017) Concise guide to formal methods: theory, fun-
damentals, and industry applications. Springer, Cham

41. Bartocci E, Deshmukh J, Donzé A, Fainekos G,Maler O, Ničković D
(2018) Specification-based monitoring of cyber-physical sys-
tems—A survey on theory, tools, and applications. In: Bartocci E,
Falcone Y (eds) Lectures on runtime verification. Lecture notes in
computer science, vol 10457. Springer, Cham

42. ETH (Eidgenössische Technische Hochschule) Information Secu-
rity Group (2022) Runtime policy monitoring and enforcement.
https://infsec.ethz.ch/research/projects/mon_enf.html. Accessed 17
Dec 2022

43. Höfig E (2011) Interpretation of behaviour models at runtime: per-
formance benchmark and case studies. Südwestdeutscher Verlag für
Hochschulschriften, Saarbrücken

44. Ardagna D, Zhang L (2010) Run-time models for self-managing
systems and applications (autonomic systems). Birkhäuser, Basel

45. Dunning T, Friedman E (2014) Practical machine learning: a new
look at anomaly detection. O’Reilly Media, Sebastopol

46. McCarthy J, Powell M, Stouffer K, Tang CYT, Zimmerman T,
Barker W, Ogunyale T, Wynne D, Wiltberger J (2020) Securing
manufacturing industrial control systems: behavioral anomaly de-
tection. https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8219.
pdf. Accessed 17 Dec 2022

47. Wang J (2020) Formal methods in computer science. Routledge,
Boca Raton

48. U.S. National Academy of Engineering (2004) The engineer of
2020: Visions of engineering in the new century. https://nap.
nationalacademies.org/download/10999. Accessed 28 Dec 2022

49. Hollnagel E (2018) Safety-II in practice: Developing the resilience
potentials. Routledge, Milton Park

50. Ninagawa C (2023) AI time series control system modelling.
Springer Nature, Singapore

51. Jamshidi M (ed) (2009) Systems of systems engineering—
Innovations for the 21st century. John Wiley & Sons Inc, Hoboken

52. Luzeaux D, Ruault J-R, Wipplere J-L (eds) (2011) Complex Sys-
tems and Systems of Systems Engineering. iSTE, London

K

https://www.iso.org/standard/74393.html
https://www.iso.org/standard/74393.html
https://www.techdesignforums.com/practice/technique/how-to-use-runtime-monitoring-for-automotive-functional-safety
https://www.techdesignforums.com/practice/technique/how-to-use-runtime-monitoring-for-automotive-functional-safety
https://www.techdesignforums.com/practice/technique/how-to-use-runtime-monitoring-for-automotive-functional-safety
https://www.techdesignforums.com/practice/technique/how-to-use-runtime-monitoring-for-automotive-functional-safety
https://users.ece.cmu.edu/
https://www.researchgate.net/publication/291229626_Sound_and_Complete_Runtime_Security_Monitor_for_Application_Software
https://www.researchgate.net/publication/291229626_Sound_and_Complete_Runtime_Security_Monitor_for_Application_Software
https://www.researchgate.net/publication/291229626_Sound_and_Complete_Runtime_Security_Monitor_for_Application_Software
https://doi.org/10.3390/electronics4040995
https://infsec.ethz.ch/research/projects/mon_enf.html
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8219.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8219.pdf
https://nap.nationalacademies.org/download/10999
https://nap.nationalacademies.org/download/10999


Informatik Spektrum (2023) 46:96–103 103

53. Rainey LB, Jamshidi M (eds) (2019) Engineering emergence—A
modeling and simulation approach. CRC Press, Boca Raton

54. Mittal S, Diallo S, Tolk A (eds) (2018) Emergent behaviour in com-
plex systems—A modeling and simulation approach. John Wiley &
Sons, Hoboken

55. Ivancevic VG, Darryn JR, Pilling MJ (2017) Mathematics of au-
tonomy—Mathematical methods for cyber-physical-cognitive sys-
tems. World Scientific, Singapore

56. Lawless WF, Ranjeev Mittu R, Sofge D, Russell S (eds) (2017)
Autonomy and artificial intelligence—A threat or savior? Springer,
Cham

57. Dunning T, Friedman E (2014) Practical machine learning: a new
look at anomaly detection. O’Reilly Media, Sebastopol

58. Burkov A (2020) Machine learning engineering. True Positive,
Quebec City

59. Faulkner A, Nicholson M (2020) The emergence of accidental au-
tonomy. In: Parsons M, Nicholson M (eds) Assuring Safe Auton-
omy. Proceedings of the 28th Safety-Critical Systems Symposium
(SSS’20), York, UK, 11–13 February 2020

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

K


	Safe and secure system architectures for cyber-physical systems
	Abstract
	Context
	Introduction
	Software
	Architecture
	Safety and security
	Drift into failure
	Last defense

	Run-time monitoring and protective shell
	Run-time monitoring principle
	Design-time architecture
	Run-time architecture

	Protective shell
	Emergent behavior
	Autonomy and machine learning
	Conclusions
	References


